
Power Modeling for Virtual Reality

Video Playback Applications

Christian Herglotz, Stéphane Coulombe

Department of Software Engineering and IT

École de technologie supérieure (ÉTS)

Montréal, Canada

Ahmad Vakili

Summit Tech Multimedia

Montréal, Canada

www.summit-tech.ca

André Kaup (Fellow IEEE)

Multimedia Communications &

Signal Processing,

Friedrich-Alexander University

Erlangen-Nürnberg (FAU)

Erlangen, Germany

Abstract—This paper proposes a method to evaluate and
model the power consumption of modern virtual reality play-
back and streaming applications on smartphones. Due to the
high computational complexity of the virtual reality processing
toolchain, the corresponding power consumption is very high,
which reduces operating times of battery-powered devices. To
tackle this problem, we analyze the power consumption in
detail by performing power measurements. Furthermore, we
construct a model to estimate the true power consumption with
a mean error of less than 3.5%. The model can be used to
save power at critical battery levels by changing the streaming
video parameters. Particularly, the results show that the power
consumption is significantly reduced by decreasing the input
video resolution.

Index Terms—360 degree, video coding, smartphone, power

I. INTRODUCTION

Due to the recent advances in virtual reality (VR) techniques

as well as the rise in the computing power of mobile devices,

most modern smartphones are capable of executing real time

VR applications. These applications can implement local play-

back, online streaming, or interactive gaming scenarios. One

of the downsides of running these applications on portable

devices is that the battery drains quickly because of high

computational requirements.

This paper presents an initial work on power modeling

of video playback in VR platforms using Android-operated

smartphones. We consider the scenario of a smartphone user

watching a video on his device using headsets like Google’s

cardboard or Samsung’s Gear VR. The application performs

pure playback such that no user interaction is possible except

for basic user commands like play, stop, or pause. We consider

two video source scenarios: local playback and online stream-

ing via a Wi-Fi connection. Finally, various use cases like

traditional 2D videos, 360◦ panorama videos, as well as 3D-

360◦ videos are considered. Testing two different applications

ensures that the proposed power model is not restricted to a

single application.

Fig. 1 shows a high-level diagram of the main processes

being performed during VR video playback. The control

process sends commands to the processing entities and ensures

synchronization. This control is usually performed by the

central processing unit (CPU). The video data can be received

by either a network interface like Wi-Fi or long-term evolution

Control

File/Network I/O Decode

Sense
Position

Render Display

Fig. 1. Flowchart of the processing pipeline for VR video playback.

(LTE), or it can be read from an internal storage like a

secure digital (SD) card. The compressed video data is then

transferred to the decoder that reconstructs the output image.

In this study, we only consider hardware decoding because

most modern devices provide such functionality. Furthermore,

decoding of high resolution videos (e.g., 4K) with software is

often not feasible in real time.

Concurrently, a motion sensor like a gyroscope or an

accelerometer, which is often available on motion processing

units (MPUs), delivers information on the current orientation

and motion of the smartphone in real time. The rendering

process exploits the motion information and the raw video data

to render the output images for the display. These processes

are usually performed by the graphics processing unit (GPU).

Finally, the output frames are sent to the display.

Similar studies have already examined various applications

like online browsing, video filming, or standard video playback

[1], where the focus was put on a high variety of applica-

tions instead of a detailed analysis on a single application.

Furthermore, different hardware modules being active in the

VR streaming pipeline such as the network interface [2], [3]

and the display [4] were investigated. Many studies focused

on the video decoding process which can be software-bound

[5], [6] or hardware-bound [7], [8]. A detailed study on the

power consumption during online VR video streaming has

been performed in [9], where the power consumption of a

smartphone was analyzed in detail. However, only few test

cases with a restricted set of input videos were considered,

such that no dependencies on high-level parameters like the

frame rate or the resolution of the video were discussed. To

the best of our knowledge, this is the first work analyzing

the power consumption depending on sequence properties and

constructing a respective power model.

In this work, we focus on the power of data processing such

that peripheral devices like the display are neglected. Further

work will include such considerations in our power model.



TABLE I
MAIN SPECIFICATIONS OF QUALCOMM’S SNAPDRAGON 820 SOM [10].

Module Properties

CPU Qualcomm Kryo quad core (64 bit)

2 low power cores (max 1.593 GHz)

2 high-performance cores (max 2.15 GHz)

GPU Adreno 530 (up to 624 MHz)

Memory 4 GB of LPDDR 4 (up to 1866 MHz)

Multimedia 4K video decoding at 60 fps (H.264 or HEVC)

However, as the tested device in this paper uses common

portable architecture, reported absolute power savings are also

valid for portable devices with a display attached.

In Section II, we introduce the power measurement setup

using a smartphone-like test board. Afterwards, in Section III,

we present the modeling approach that is inspired by power

modeling for video streaming. Then, in Section IV, we validate

the proposed models on various video streams and playback

settings. The trained models are analyzed and give insights

into the power characteristics of the VR video process that

are also discussed. Finally, Section V concludes this paper.

II. POWER MEASUREMENT SETUP

For the measurement of the power consumption, we chose

the Eragon 820 software development kit (SDK) evaluation

board [10]. It is equipped with a Qualcomm Snapdragon

820 system-on-module (SOM). The main specifications of the

SOM are summarized in Table I. This system includes a quad-

core processor that is used in many modern smartphones of

manufacturers.

Android is used as the operating system and the im-

pact of simultaneously running subroutines is minimized by

uninstalling, disabling, or removing all unnecessary system

processes from the application cache. Furthermore, services

such as Bluetooth, global positioning system (GPS), and Wi-Fi

are switched off when not used for measurements. To simulate

the display output, an external screen is attached to the HDMI

output port.

The power itself is measured through the main power supply

jack using an external power meter as shown in Fig. 2.

The power meter is a Monsoon High Voltage Power Meter

(HVPM) [11]. It provides the input voltage of 12 V and reads

the power consumption with a sampling rate of 5 000 kHz.

To simulate online streaming, the video sequence is streamed

via Adobe’s RTMP network protocol. The evaluation board

receives the live stream through the Wi-Fi interface.

As tested applications, we choose VaR’s VR Player [12]

and VRTV [13]. The former one is used to measure local

playback, the latter one to measure streaming through a Wi-Fi

network. Both applications allow various playback options as

explained in the following. For each option, a unique identifier

is defined.

First of all, classic 2D video playback is performed in which

the video stream is just displayed on the device. Second, a

stereo (’st’) view is enabled, in which the same image is

+

-

Power Meter &
Voltage Source

Evaluation Board

USB

Server

Downstream

Upstream

Workstation

Fig. 2. Measurement setup with evaluation board, power meter, streaming
server, and workstation for data analysis.

displayed on the left and the right part of the display, such that

a VR headset can be used. In the basic case, head tracking

is disabled such that the video is always located exactly in

front of the eyes. Next, head tracking is enabled such that the

displayed content changes dynamically based on the tracked

position (’dyn’), although the screen is at a fixed position in

the VR environment. The next option allows to watch 360◦

sequences, in which the VR user is immersed into the sequence

(’360’). Finally, 3D VR is tested by using a left and a right

view (’3D’) to include depth information.

Further playback options were tested in the dynamic case.

Regarding head tracking, in the standard setting, the sensor

is chosen automatically. Additional measurements were per-

formed for the explicit use of the gyroscope (’gyro’), the

accelerometer (’accel’), and the magnetometer (’magn’). It is

worth mentioning that head tracking only worked correctly in

standard and in gyroscope mode.

Furthermore, lens distortion, zooming, and physical head

movement using a turntable were tested. As the power mea-

surements indicate that all these options have a very small

influence on the power (the mean power for all test sequences

differed by less than 1% in comparison to the default setting),

they are not used and tested in the proposed modeling ap-

proaches. Table II summarizes the eight playback option sets

that were measured.

A showcase power measurement for watching 10 s of video

using VaR’s VR Player with head tracking enabled and a 360◦

video format is shown in Fig. 3. The x-axis shows the time in

seconds (s) and the y-axis the measured power values in watts

(W). At the beginning, the app is launched and waits for the

play command. The playback starts at approximately 0.1 s. A

short initialization phase follows until 2 s, during which the

maximum power is less than 6 W. Finally, after 2 s, the power

reaches a static behavior with minimum and maximum powers

of 2 W and more than 6 W, respectively. The playback ends

at approximately 11.5 s.

Further tests showed that for longer playback cases, the

power characteristics do not change. To make sure that the

mean power is averaged over the static playback process,

only 7 s of the complete process, which begins after the

initialization phase and ends before the stop, are considered.



TABLE II
LIST WITH MEASURED PLAYBACK SETTINGS I TO VIII. ’A1’

CORRESPONDS TO VAR’S VR PLAYER AND ’Ab’ TO BOTH APPLICATIONS.
’x’ AND ’−’ INDICATE THAT THE OPTIONS ARE SWITCHED ON AND OFF,
RESPECTIVELY. THE INDICATOR ’a’ FOR THE ROWS ’gyro’, ’accel’ AND

’magn’ INDICATE THAT THE HEAD-TRACKING SENSOR IS CHOSEN

AUTOMATICALLY BY THE APPLICATION.

I II III IV V VI VII VIII

Apps A1 A1 Ab Ab Ab A1 A1 A1

st - x x x x x x x

dyn - - x x x x x x

360 - - - x x x x x

3D - - - - x x x x

gyro - - a a a x - -

accel - - a a a - x -

magn - - a a a - - x

0 2 4 6 8 10 12
0

2

4

6

8

Time [s]

P
o
w

er
[W

]

Fig. 3. Power consumption of the VR playback process including head
tracking using VaR’s VR Player (sequence AerialCity at 3840×1920 pixels,
30 fps, crf 28, cf. Table III).

To have more realistic power results, a constant offset power

is subtracted from all power measurements. This constant

offset corresponds to the power the evaluation board consumes

in idle mode. In this case, idle mode is considered to be the

case when no user application is running, i.e., the display

shows the home screen. The advantage is that the differential

power values are comparable to the power consumption of

real smartphones that are not affected by overhead hardware

modules like Ethernet connectors or additional USB ports.

III. POWER MODELING

We assume that each power component adds to the complete

power linearly and write the complete power P̂VR as

P̂VR = P̂cont + P̂rec + P̂dec + P̂sens + P̂rend + P̂disp, (1)

where the circumflex indicates that the power is estimated.

P̂cont is the power needed for controlling the process, P̂rec is

the receiver power, P̂dec the decoding power, P̂sens the sensing

power, P̂rend the rendering power, and P̂disp the power of

the display. This approach corresponds to the main processing

steps identified in Fig. 1.

For the controlling power, no explicit model is known from

the literature. For simplicity, we assume a constant power

P̂cont = pcont,0. (2)

In terms of the receiver power P̂rec, when fixed network

settings are used, Sun et al. [3] found that a constant offset

and a linear term depending on the bitrate b are the main

factors describing the receiver power in Wi-Fi networks. A

similar observation was made by Huang et al. [14] for 4G

LTE networks. Hence, we model the receiver power as

P̂rec = prec,b · b+ prec,0, (3)

where both parameters can have different values for different

networks.

For the decoding power, we consider a model that origi-

nally targets energy estimation [8]. The model considers the

variables frame rate f , resolution S, and bitrate b. We rewrite

the model to enable power estimation and obtain

P̂dec = pdec,0 + pdec,f · f + pdec,S · S + pdec,b · b. (4)

In this model, the parameter pdec,0 is a constant offset power

and the parameters pdec,f , pdec,S , and pdec,b describe linear

contributions of f , S, and b. The resolution S is the product

of the pixel width and the pixel height.

For rendering, we consider the power consumption of the

GPU. A corresponding power analysis was performed by Chen

et al. [15]. However, a suitable model was not proposed. In this

work, we propose to also use the frame rate and the resolution

of the sequence for power modeling because these two metrics

are directly related to the computational complexity of the

rendering process. As both parameters are already included

in the decoder power models, we assume that no additional

modeling parameter is required for P̂rend. As a consequence,

the decoder parameters cover both decoding and rendering

powers.

Next, the options of the applications discussed in Section II

are considered (’dyn’, ’360’, etc.). The settings affect both the

rendering and the sensing process. Our measurements indicate

that it is sufficient to model these settings using constants as

P̂sens = pgyro · Fgyro + paccel · Faccel + pmagn · Fmagn (5)

and

P̂rend = pst · Fst + pdyn · Fdyn + p360 · F360 + p3D · F3D.

(6)

The parameters F(·) represent flags showing with the values

1 and 0 whether the setting is activated. For example, Fst =
1 means that two views for the use with a VR headset are

rendered and Fst = 0 means that only the classic single view

(like in regular video streaming) is shown on the display.

Finally, as the display is not part of the measurements, we

neglect its power consumption (P̂disp = 0). We gather the

information from (1) to (6) and combine the parameters that

are linearly redundant. These are the constant offsets

p0 = pcont,0 + prec,0 + pdec,0 (7)

and the bitrate dependent parameters

pb = prec,b + pdec,b. (8)



The resulting model reads

P̂VR,a =p0 + pb · b+ pdec,f · f + pdec,S · S (9)

+ pst · Fst + pdyn · Fdyn + p360 · F360 + p3D · F3D

+ pgyro · Fgyro + paccel · Faccel + pmagn · Fmagn.

It includes 10 variables and K = 11 parameters and in the

following, is referred to as advanced model.

Evaluations showed that within the limits of the content

we tested, several variables only contribute marginally to the

modeling accuracy such that they can be dropped. Hence, we

construct a simplified model with the following method. We

use (9) as a baseline, drop one by one each of the input

variables, and discard those that cause an estimation error

increase by less than 0.5%. The resulting model reads

P̂VR,s = p0 + b · pb + pdec,S · S + p360 · F360, (10)

which includes 3 variables and K = 4 parameters. In the fol-

lowing, this model is called simplified model. It comprises the

parameters with the highest impact on the power consumption.

IV. EXPERIMENTAL RESULTS

The evaluation is split into four parts. First, we present

the set of tested input video sequences in Section IV-A.

Afterwards, we discuss the evaluation method which makes

use of the mean estimation error in Section IV-B. Third, we

evaluate the models from Section III in Section IV-C and

finally, the modeling results are interpreted in Section IV-D.

A. Test Sequences

We measure the power consumption of the two applica-

tions with a high number of input sequences with different

properties. These sequence-related properties comprise the

content of the sequence, the frame rate, the resolution, and

the format projection. As for the format projections, we

choose classic rectilinear (recti) videos and equirectangular

(equi) videos representing 360◦ content. Additionally, the top-

bottom equirectangular format that allows 3D-360◦ playback

is used. The rectilinear and equirectangular sequences are

taken from the HEVC common test conditions [16] and from

VVC documents [17], respectively. A personal archive was

used for the 3D sequences, which were all recorded from a

fixed camera position. The sequences and their main properties

are listed in Table III.

The ’Cars02’ sequence was recorded from a sidewalk show-

ing several cars passing by. The ’Kitchen2’ sequence was

recorded inside a kitchen showing several people working.

The ’Skatedance’ sequence was recorded in the center of an

ice rink showing girls practicing figure skating. Finally, the

’Wall6’ sequence was recorded in a climbing hall.

The sequences are encoded with the x265 and the x264

encoders [18], [19]. These encoders were selected to com-

pare the behavior of the two codecs H.264 and HEVC. The

standard encoder settings are used in general; however, for

each sequence, four instances are coded with the constant rate

factors (crf) 18, 23, 28, and 33 to take different bitrates into

TABLE III
TEST SEQUENCES USED FOR POWER MEASUREMENTS. ALL SEQUENCES

HAVE A DURATION OF 10 S.

Name S f Projection 3D

BQSquare 416× 240 60 recti no

BlowingBubbles 416× 240 50 recti no

BasketballPass 416× 240 50 recti no

RaceHorses 416× 240 30 recti no

BQMall 832× 480 60 recti no

BasketballDrill 832× 480 50 recti no

PartyScene 832× 480 50 recti no

Flowervase 832× 480 30 recti no

FourPeople 1280 × 720 60 recti no

Johnny 1280 × 720 60 recti no

SlideEditing 1280 × 720 30 recti no

SlideShow 1280 × 720 20 recti no

BQTerrace 1920× 1080 60 recti no

BasketballDrive 1920× 1080 50 recti no

Cactus 1920× 1080 50 recti no

Kimono 1920× 1080 24 recti no

AerialCity 3840× 1920 30 equi no

DrivingInCity 3840× 1920 30 equi no

DrivingInCountry 3840× 1920 30 equi no

PoleVault 3840× 1920 30 equi no

Cars02 3840× 2160 30 equi yes

Kitchen2 3840× 2160 30 equi yes

Skatedance 4096× 2048 30 equi yes

Wall6 3840× 1920 30 equi yes

account. In total, we use 192 sequences for our measurements,

i.e., 96 for each codec.

Bit streams with a bitrate higher than 12 Mbps are discarded

in measuring the VRTV online streaming case because a stable

stream could not be established through the Wi-Fi connection.

The resulting set includes 78 bit streams with at least two

bit streams for each sequence from Table III. Furthermore,

all sequences are tested for all configurations although some

configurations would not constitute a reasonable use case, e.g.,

using a rectilinear video in a 360◦ environment. This enables to

strictly separate the 360◦-rendering power from the sequence

specific decoding power.

B. Evaluation Method

For model evaluation, we transform the advanced model and

the simplified model into a vector notation and obtain

P̂VR,i = Ai · pi, (11)

where i indicates the model index (i ∈ {a, s}), pi is a vector

containing all K parameters p(.), Ai is a matrix containing

the values of all variables for all N measurements, and P̂VR,i

a vector containing all N estimated powers when using model

i.

To separate the training data from the evaluation data, we

perform cross-validation. For each validation iteration, we use

the measurements corresponding to one source sequence for



TABLE IV
ESTIMATION ERRORS FOR THE MODELS INTRODUCED IN SECTION III.

THE NUMBER OF TRAINED PARAMETERS OF THE MODEL IS INDICATED IN

THE THIRD COLUMN. THE FOURTH COLUMN INDICATES THE APPLICATION

THAT WAS TARGETED DURING CROSS-VALIDATION.

Model Eq. # Parameters App ε̄ εmax

P̂VR,a (9) 10 VaR 2.32% 13.3%

P̂VR,s (10) 4 VaR 2.25% 13.7%

P̂VR,a (9) 10 VRTV 3.28% 14.0%

P̂VR,s (10) 4 VRTV 3.47% 13.5%

validation and all the remaining measurements for training.

For model training in each iteration of the cross-validation,

the vector of model parameters is determined to minimize the

sum of the squared estimation errors as

min
p
i
∈IRK



ei =

n
∑

j=1

(

P̂VR,i(j)− P (j)
)2



 , (12)

where j is the measurement index, n the cardinality of

the training set, P̂VR,i(j) the estimated power for the j-th

measurement using model i, and P (j) the measured power of

the j-th measurement. The training algorithm is a trust-region

reflective algorithm proposed by Coleman et al. [20].

Finally, the models are evaluated using the mean relative

estimation error and the maximum relative estimation error

from validation as

ε̄i =
1

N

N
∑

j=1

∣

∣

∣

∣

∣

P̂VR,i(j)− P (j)

P (j)

∣

∣

∣

∣

∣

(13)

and

εi,max = max
1≤j≤N

{
∣

∣

∣

∣

∣

P̂VR,i(j)− P (j)

P (j)

∣

∣

∣

∣

∣

}

. (14)

C. Estimation Errors

Table IV summarizes the estimation errors for VaR’s VR

player and VRTV separately. The table shows that the mean

estimation error is below 3.5% for all tested cases. The

maximum estimation error is below 15%.

The estimation errors for the VRTV application are gen-

erally larger (over 3%), which can be explained by Wi-Fi

streaming which is less predictable than local memory reading.

The observation that estimation errors of the second model

only differ slightly in comparison with the first model confirms

that the dropped parameters can be neglected for accurate

modeling.

D. Interpretation

To assess the contribution of each modeling parameter in

detail, we calculate their maximum contribution on all mea-

sured powers P (j) using the advanced model. It is obtained

by

Ck,max[%] = max
1≤j≤N

∣

∣

∣

∣

A(j, k) · p(k)

P (j)

∣

∣

∣

∣

· 100%, (15)

0% 20% 40% 60% 80% 100%

pmagn · Fmagn

paccel · Faccel

pgyro · Fgyro

p3D · F3D

p360 · F360

pdyn · Fdyn

pst · Fst

pb · b
pdec,S · S
pdec,f · f

p0

Maximum Contribution CV,max

Fig. 4. Relative maximum contributions CV,max of parameter-variable
products to the complete power.

where k is the index of the variable used for modeling (e.g.,

the frame rate f , the resolution S, or a flag F(.)). p(k) is the

corresponding model parameter as returned by training. The

resulting values for all parameters in the case of VaR’s VR

Player are shown in Fig. 4. We can see that within the limits

of the content we tested, the offset power is most important

as in the maximum case, the estimated contribution is even

higher than the complete measured power (> 100%). The

corresponding measurement was made for a low-resolution

sequence with a small bitrate and a small frame rate.

This counter-intuitive observation is obtained because the

measurement method does not allow to measure the offset

separately from other variables. If VR playback is running,

other variables like frame rate and resolution must be non-

zero, too. As a consequence, the offset value, which fits the

measurement best in terms of the error criterion (12), can be

larger than the smallest measured power.

Further important variables are the resolution, the bitrate,

and the flag indicating 360◦ processing, which all show a max-

imum contribution of more than 9%. A striking observation

is that the influence of the frame rate is rather small. From

observations in decoder modeling [7], [8], a higher influence

would have been expected. Presumably, the reason is that for

VR applications, the output frame rate is always set to the

highest level to be able to follow head rotation as quickly

as possible. Hence, differences in the frame rate of the input

sequence only affect the decoding process.

To visualize the power consumption for two representative

test cases, we plot the measured power and the modeled power

distribution in Fig. 5. The measured power is depicted by

the dark blue bars. The stacked bars below show the power

distribution as returned by model 4. Assuming that modeling

is accurate, most of the power is attributed to the offset (almost

1 W). For the 4K sequence, the resolution still accounts for

approximately 0.4 W. The bitrate has a rather small influence

(due to the high constant rate factor) and the projection format

conversion requires approximately 100 mW.

These results indicate that a significant amount of power

can be saved by switching to a low resolution for the input

video. In case a smartphone recognizes that its battery is low,



Measured power P
p0
pS · S
pb · b
p360 · F360

0 0.5 1 1.5

PartyScene
crf 28, 360◦

DrivingInCountry
crf 28, 360◦

PartyScene
crf 28, no 360◦

DrivingInCountry
crf 28, no 360◦

Power [W]

Fig. 5. Measured and estimated power consumption for four test cases in
VaR’s VR Player. The blue bars correspond to the measured power, the stacked
bars below the blue bars represent the corresponding power estimates by
model 4, split up into the summands. Head tracking is switched on with
standard sensors, the codec is HEVC.

it could switch from a 4K to a 2K sequence, which would

result in estimated power savings of

∆p = (3840 · 1920− 1920 · 1080) · pS. (16)

Taking the example of the DrivingInCountry sequence in the

360◦ mode (Fig. 5), this would save 0.266 W, which accounts

for 17.2% of the total power consumption.

To verify this claim, we encoded the corresponding se-

quence with the lower resolution of 2K and measured the

corresponding power. A true power reduction of 18.3% could

be observed. As similar observations could be made for other

sequences, we can conclude that reducing the resolution is a

valid and preferred way to reduce the power consumption.

V. CONCLUSION

This paper demonstrates that the power needed for live

VR applications on mobile devices mainly depends on few

parameters: the input video resolution, the bitrate, and the

projection format conversion from ERP to rectilinear. This

result is verified for two different VR applications. Two models

were tested that both reach mean estimation errors below

3.5%. It is also shown that a significant amount of power

can be saved by decreasing the input video resolution, which

may, however, negatively affect the user experience.

Future studies may attempt to replicate and test our pro-

posed methods and settings on other devices and software

applications including wired professional VR headsets like the

Oculus Rift or the HTC Vive. Interactive applications includ-

ing user feedback can also be modeled and analyzed. Finally,

the resulting models and power measurements are helpful tools

to develop energy and power efficient VR solutions.

ACKNOWLEDGMENT

This work was supported by Mitacs and Summit Tech

Multimedia (https://www.summit-tech.ca/) through the Mitacs

Accelerate Program.

REFERENCES

[1] A. Carroll and G. Heiser, “The systems hacker’s guide to the galaxy
- energy usage in a modern smartphone,” in Proc. 4th Asia-Pacific

Workshop on Systems (APSys), Singapore, 2013.
[2] L. Zou, A. Javed, and G. Muntean, “Smart mobile device power

consumption measurement for video streaming in wireless environments:
WiFi vs. LTE,” in Proc. IEEE International Symposium on Broadband

Multimedia Systems and Broadcasting (BMSB), Cagliari, Italy, June
2017, pp. 1–6.

[3] L. Sun, R. Sheshadri, W. Zheng, and D. Koutsonikolas, “Modeling WiFi
active power/energy consumption in smartphones,” in Proc. IEEE 34th
International Conference on Distributed Computing Systems (ICDCS),
Madrid, Spain, Jun 2014, pp. 41–51.

[4] Q. Liu, Z. Yan, and C. W. Chen, “Cloud-based video streaming with
systematic mobile display energy saving: Rate-distortion-display energy
profiling,” in Proc. IEEE International Conference on Image Processing

(ICIP), Phoenix, AZ, USA, Sept 2016, pp. 1504–1508.
[5] T. Mallikarachchi, D. S. Talagala, H. K. Arachchi, and A. Fernando,

“A feature based complexity model for decoder complexity optimized
HEVC video encoding,” in Proc. IEEE International Conference on

Consumer Electronics (ICCE), Las Vegas, USA, Jan 2017, pp. 366–369.
[6] C. Herglotz, D. Springer, M. Reichenbach, B. Stabernack, and A. Kaup,

“Modeling the energy consumption of the HEVC decoding process,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 28, no. 1, pp. 217–229, Jan 2018.

[7] X. Li, Z. Ma, and F. C. A. Fernandes, “Modeling power consumption
for video decoding on mobile platform and its application to power-
rate constrained streaming,” in Proc. Visual Communications and Image

Processing (VCIP), San Diego, USA, Nov 2012.
[8] C. Herglotz and A. Kaup, “Decoding energy estimation of an HEVC

hardware decoder,” in Proc. International Symposium on Circuits and

Systems (ISCAS), Firenze, Italy, May 2018, pp. 1–5.
[9] N. Jiang, V. Swaminathan, and S. Wei, “Power evaluation of 360

VR video streaming on head mounted display devices,” in Proc. 27th

Workshop on Network and Operating Systems Support for Digital Audio

and Video. ACM, 2017, pp. 55–60.
[10] eInfochips, “Eragon 820 SOM development kit - technical datasheet,”

https://eragon.einfochips.com/pub/media/Productattachments/e/r/
qualcomm-snapdragon-820-apq8096-eragon-820-technical-
datasheet.pdf, 2018.

[11] Monsoon Solutions, Inc. High voltage power mon-
itor - mobile device power monitor manual.
http://msoon.github.io/powermonitor/PowerTool/doc/Power Monitor
Manual.pdf. Accessed 2018-11.

[12] AfterBreakdownGames. VaR’s VR Player.
http://afterbreakdowngames.com/. Accessed 2018-11.

[13] Chai Software. VRTV. https://chaisoftware.wordpress.com/. Accessed
2018-11.

[14] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck, “A
close examination of performance and power characteristics of 4G LTE
networks,” in Proc. 10th International Conference on Mobile Systems,

Applications, and Services, ser. MobiSys ’12. New York, NY, USA:
ACM, 2012, pp. 225–238.

[15] X. Chen, Y. Chen, Z. Ma, and F. C. Fernandes, “How is energy consumed
in smartphone display applications?” in Proc. 14th Workshop on Mobile

Computing Systems and Applications. ACM, 2013.
[16] F. Bossen, “JCTVC-L1100: Common test conditions and software refer-

ence configurations,” Joint Collaborative Team on Video Coding (JCT-
VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, Geneva,
Switzerland, Tech. Rep., Jan 2013.

[17] P. Hanhart, J. Boyce, and K. Choi, “JVET common test conditions and
evaluation procedures for 360◦ video,” Joint Video Exploration Team
(JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11,
JVET-K1012, Jul 2018.

[18] x265: H.265 / HEVC video encoder application library. x265.org.
Accessed 2018-11.

[19] x264: Encoder for H.264/MPEG-4 AVC video compression. x264.org.
Accessed 2018-11.

[20] T. F. Coleman and Y. Li, “An interior trust region approach for nonlinear
minimization subject to bounds,” SIAM Journal on optimization, vol. 6,
no. 2, pp. 418–445, 1996.


